Analysis of functional domain organization in DNA topoisomerase II from humans and Saccharomyces cerevisiae.

نویسندگان

  • S Jensen
  • A H Andersen
  • E Kjeldsen
  • H Biersack
  • E H Olsen
  • T B Andersen
  • O Westergaard
  • B K Jakobsen
چکیده

The functional domain structure of human DNA topoisomerase IIalpha and Saccharomyces cerevisiae DNA topoisomerase II was studied by investigating the abilities of insertion and deletion mutant enzymes to support mitotic growth and catalyze transitions in DNA topology in vitro. Alignment of the human topoisomerase IIalpha and S. cerevisiae topoisomerase II sequences defined 13 conserved regions separated by less conserved or differently spaced sequences. The spatial tolerance of the spacer regions was addressed by insertion of linkers. The importance of the conserved regions was assessed through deletion of individual domains. We found that the exact spacing between most of the conserved domains is noncritical, as insertions in the spacer regions were tolerated with no influence on complementation ability. All conserved domains, however, are essential for sustained mitotic growth of S. cerevisiae and for enzymatic activity in vitro. A series of topoisomerase II carboxy-terminal truncations were investigated with respect to the ability to support viability, cellular localization, and enzymatic properties. The analysis showed that the divergent carboxy-terminal region of human topoisomerase IIalpha is dispensable for catalytic activity but contains elements that specifically locate the protein to the nucleus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, functional analysis and post-transcriptional regulation of a type II DNA topoisomerase from Leishmania infantum. A new potential target for anti-parasite drugs.

We identified a type II topoisomerase enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li topo II, which displays a variable C-terminal end, is located in the kinetoplast. The cloned gene encoding Li-TOP2 compensates for the slow growth of topo II-deficient mutants of Saccharomyces cerevisiae, resulting in a catalytically active DNA topoisomer...

متن کامل

DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication.

A temperature-sensitive DNA topoisomerase II mutant of the yeast Saccharomyces cerevisiae has been identified. Genetic analysis shows that a single recessive nuclear mutation is responsible for both temperature-sensitive growth and enzymatic activity. Thus, topoisomerase II is essential for viability and the mutation is most probably in the structural gene. Experiments with synchronized mutant ...

متن کامل

Functional dissection of the C-terminal domain of type II DNA topoisomerase from the kinetoplastid hemoflagellate Leishmania donovani.

The amino acid sequences of the C-terminal domain (CTD) of the type II DNA topoisomerases are divergent and species specific as compared with the highly conserved N-terminal and central domains. A set of C-terminal deletion mutants of Leishmania donovani topoisomerase II was constructed. Removal of more than 178 amino acids out of 1236 amino acid residues from the C-terminus inactivates the enz...

متن کامل

Large-scale analysis of genes that alter sensitivity to the anticancer drug tirapazamine in Saccharomyces cerevisiae.

Tirapazamine (TPZ) is an anticancer drug that targets topoisomerase II. TPZ is preferentially active under hypoxic conditions. The drug itself is not harmful to cells; rather, it is reduced to a toxic radical species by an NADPH cytochrome P450 oxidoreductase. Under aerobic conditions, the toxic compound reacts with oxygen to revert back to TPZ and a much less toxic radical species. We have use...

متن کامل

Molecular cloning and expression of the Candida albicans TOP2 gene allows study of fungal DNA topoisomerase II inhibitors in yeast.

Candida albicans topoisomerase II, encoded by the TOP2 gene, mediates chromosome segregation by a double-strand DNA break mechanism and is a potential target for anti-fungal therapy. In this paper, we report the characterization of the C. albicans TOP2 gene and its use to develop a yeast system that allows the identification and study of anti-fungal topoisomerase II inhibitors in vivo. The gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 1996